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Abstract 

Capacity mechanisms aim at enhancing mid- to long-term reliability by adding an extra 

income for generation and demand response resources, based on their firm capacity, a 

parameter commonly defined by the regulator. The firm capacity is often calculated by 

multiplying the installed capacity by a de-rating factor, to reflect the expected capability of 

the resources to contribute to system reliability. Computing de-rating factors is quite a 

challenging and pivotal task, for any error in its determination can seriously affect the 

performance of the capacity mechanism. 

In this paper, using a two-step model that simulates both the capacity auction and the short-

term market, we show that the ex-ante definition of firm capacity influences investment 

decisions, altering the resulting resource mix and, in the end, the very contribution to the 

system reliability of the resources. Being aware of this potential mismatch caused by the 

definition of the firm capacity is fundamental for regulators to avoid paying for something 

that may be unable to contribute to meet the desired reliability target, or which could even 

deteriorate system adequacy. 

The discussion is illustrated with a case example, focusing on the impact of the definition of 

solar PV de-rating on the outcome of the capacity mechanism and the reliability of the 

system. 



 

2 

Keywords 

Capacity mechanisms; Reliability; Security of supply; De-rating; Firm capacity; Capacity 

auctions. 

1 INTRODUCTION 

Capacity mechanisms have become one of the regulatory pillars of the energy transition of 

the power sector. The need to decarbonize the economy and to achieve ambitious 

environmental targets has gradually led governments to introduce policies that affect the 

electricity market, increasing the risk and uncertainty perceived by stakeholders 

[1][2][3][4]. In this context, capacity mechanisms aim at providing a long-term risk-

hedging tool to investors and guarantee the reliability of the system while it transitions to 

low-carbon technologies [5][6][7][8][9]. Once implemented only in a small number of 

liberalised power sectors, especially in the American continent, capacity mechanisms have 

become increasingly prominent on the regulatory agenda in the last two decades and are 

now predominant also in Europe [10]. The majority of these capacity markets allow some 

sort of participation from renewable energy sources [11]. 

A pivotal element in the design of these regulatory instruments is the so-called firm 

capacity1. According to regulatory theory, the latter should represent the expected 

contribution that a certain resource will provide to the reliability of the system [12]. Firm 

capacity is calculated by multiplying the installed capacity of the resource by a de-rating 

                                                 

1 Firm capacity is a concept commonly used in capacity-constrained power systems, e.g., those dominated by 

thermal generation. In hydro-dominated systems, reliability mechanisms are based on the concept of firm 

energy. Both concepts can be encompassed by the expression firm supply. In this article, the expression firm 

capacity is used because the model simulates a capacity-constrained system. 
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factor or a capacity credit. Once computed, this firm capacity becomes the upper limit of 

capacity that the resource can trade in the market. The methodologies to compute the firm 

capacity or de-rating factors of different resources will have to be updated in the context of 

the energy transition. The methods currently in use in the majority of capacity mechanisms 

were developed for power systems with resource mixes very different and much simpler, 

stabler, and more predictable than the ones presently in place or expected to come on stream 

in the future. More technological alternatives are now being implemented. The presence of 

renewable technologies varies the type and magnitude of scarcity affecting power systems 

and raises the correlation between resource availability and peak load timing. All these 

factors will have to be internalised in the firm supply calculation. 

The goal of this article is not to delve into the methodology to calculate firm capacities or 

de-rating factors; theoretical analyses on this topic can be found in [12][13][14][15][16] 

[17][18][19][20]. The objective of this paper is to stress and empirically demonstrate the 

influence that the definition of de-rating factors in the context of a capacity mechanism can 

have on the electricity system as a whole. 

1.1 Implications of the de-rating process 

When introduced in electricity markets, capacity mechanisms become the main entry point 

to the power sector. Although investors could still install new generation facilities without 

signing a capacity contract, they are likely to be eager to benefit from this complementary 

source of remuneration. The de-rating criteria defined by the regulator condition the 

amount of firm capacity that each resource or technology can trade. De-rating factors should 

reflect the expected contribution of each resource to reliability and should be based on 

forecasts on the future operation of the power sector [21][22][23][24][25][26]. 
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This can create a sort of catch-22 situation, in which the regulator, when forecasting the 

operation of different resources in order to calculate de-rating factors, is inevitably 

influencing the expansion of the system and, therefore, also the future reliability 

performance of each resource. On the one hand, we may have a self-fulfilling prophecy2, i.e., 

a situation in which the de-rating factors determined by the regulator drive the system right 

in the direction outlined by the forecasts on which their calculation is based and allowing it 

to comply with the reliability target originally defined. On the other hand, there is the risk 

of a self-destroying prophecy, where de-rating factors drive the system right in the opposite 

direction than the forecasts behind their computation, therefore shifting the resource mix 

towards inefficient solutions [12]. 

1.2 Research gap and objectives of the article 

Capacity mechanisms and their impact on the power sector have already been analysed in 

the academic literature through simulation models. Duggan (2020) [27] presents a detailed 

review of these theoretical exercises. In many cases, simulation models have been used to 

assess the impact of capacity mechanisms on system reliability [28][29][30], to compare 

different designs among them (e.g., strategic reserves vs. centralised capacity markets) 

[31][32][33], or to compare capacity mechanisms with other regulatory approaches (as 

energy-only markets or scarcity pricing) [34][35]. Other studies model capacity 

mechanisms to analyse how they influence the investment decisions of certain market agents 

[36][37]. In other cases, researchers have tried to model real capacity mechanisms, as Kraft 

did for the French decentralised capacity market [38]. Simulation models have also been 

                                                 

2 In this article, the expression self-fulfilling prophecy is not used with a negative meaning, but rather it refers 

to a situation in which a prediction causes itself to become true. Of course, this sociological/psychological 

notion is not used in this article in a strict sense. 
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widely used to study the cross-border effects of capacity mechanisms [39][40][41][42]. 

Finally, some simulation models replicate the functioning of capacity mechanisms to study 

the effect of a specific design element, such as the demand in the auction, the design of the 

reliability product, or the presence of performance incentives [43][44][45]. 

De-rating factors used in capacity mechanisms have been rarely addressed by simulation 

models. Botero et al. (2010) quantitatively studied how the de-rating factor of Colombian 

wind power varies when applying a set of different de-rating methodologies [46]. Nolan et 

al. (2017) uses a simulation model to compute the capacity value of demand resources [47]. 

Bothwell and Hobbs (2017) quantified the loss of economic efficiency that may be provoked 

by an inaccurate capacity crediting of wind power in ERCOT [12]. 

This article addresses a similar research question, i.e., the influence of de-rating factors on 

the outcomes of the capacity market, but focusing on how the de-rating factors affect the 

reliability of the system and the actual contribution of each resource as compared to the 

expected one. In particular, this exercise is carried out for solar PV by studying how the de-

rating factor that is defined ex-ante, i.e., before the capacity market is cleared, conditions the 

results of the capacity auction and, consequently, what is the real contribution of solar PV 

to reliability and whether there is a risk of producing a mismatch between the expectations 

and the outcomes. This technology has been selected because the effect is more evident for 

solar PV, but the same findings can be applied to other technologies, e.g., to wind power. 

A two-step model is used to simulate the energy and the capacity market. The de-rating 

factors of the potential new entrants in the mix are considered as exogenous variables 

defined by the regulator, and the outcome of the model is studied for a range of different 

values that these parameters can assume. This model is described in detail in section 2, while 
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section 3 presents the results of the simulation model and discusses them. Section 4 

concludes and provides the main policy implications of this study. 

2 MATERIALS AND METHODS 

The analysis presented in this article is based on a two-step model that replicates the 

participants’ behaviour in a capacity auction, in which the bids are based on the results of a 

simulated future short-term market.  

The simulation model is based on the one presented in Mastropietro et al. (2016) [45], 

which has been adapted to illustrate the influence of de-rating factors on the results of a 

capacity auction. The model mimics the market agents’ auction bids building process: they 

estimate what their future income in the short-term market will be, and then, on that basis, 

they evaluate the income they need to get from the capacity remuneration to make the 

investment decision sufficiently profitable. The ultimate objective is to illustrate how the 

ex-ante allocation of the firm capacities heavily conditions the outcomes and how the latter 

might not necessarily match the expectations. 

A direct-search approach is applied by means of a two-step model that seeks to attain the 

least-cost capacity market result, in which agents are able to perfectly anticipate the future 

mix (and therefore the result of the auction): 

• In the first step, all potentially feasible future generation mixes are identified, and the 

future performance of the short-term market is simulated for each of them, allowing to 

evaluate the income to be collected by the different resources. This step consists of a 

centralised deterministic Unit Commitment (UC) that aims at simulating a fully 

competitive short-term market through minimization of electricity supply costs. 

• Then, the second step consists of clearing the capacity auction. To do so, the bids for the 

capacity market are first calculated based on the result of the short-term market and the 
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de-rating factors. Based on those bids, the capacity market is cleared following a pay-as-

cleared mechanism. Finally, the mix resulting from the auction is compared to the initial 

mix used to simulate the short-term market for validation. Only those generation mixes 

for which the mix resulting from the auction matches the forecasted one are considered 

as valid. 

• Finally, once all valid solutions are identified, the model selects the one that minimizes 

the price in the auction. 

The second step of the previous model is executed for several different values of the de-

rating factor for the solar PV technology. The simulations allow us to analyse the impact 

that the definition of de-rating factors has on the results of the capacity auction and, 

consequently, on the evolution of the generation mix.  

The model methodology is graphically represented in Figure 1, while the remainder of this 

section describes in detail the modelling of the two different steps. 
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Figure 1: Schematic representation of the model that simulates the capacity auction for different PV de-rating factors 
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2.1 First step: the short-term market 

The first step is the creation of the different scenarios of the future generation mix that feed 

agents’ calculations to determine their bid in the capacity auction. Generation mixes are 

based on a predefined set of existing generation units (representing a capacity-constrained 

system dominated by thermal power plants), which are kept constant in all scenarios, and 

all plausible combinations of new entrants3. For the sake of simplicity, the case example only 

considers two potential technologies for new investments, namely Combined Cycle Gas 

Turbines (CCGT) and solar photovoltaic (PV) power plants. 

For each scenario of the generation mix, a deterministic unit commitment is run for a time 

horizon of one year, as represented on the left side of Figure 1. This UC reproduces a 

centralised hourly day-ahead market with perfect competition, inelastic demand and the 

objective function minimizes electricity supply costs. In order to maintain computation time 

in an acceptable range, units of the same technology have been clustered, as performed in 

Mastropietro et al. (2016) [45], which was also proposed in [48], and a Relaxed Mixed 

Integer Programme (RMIP) solver is used. The revenues of market agents are based on the 

hourly marginal spot price, plus non-linear side payments [49][50] with daily settlements 

for those units that do not recover their start-up, no-load or shut-down costs. 

Thermal power plants in the model are subject to outages. As in [45], these events are 

represented through a vector (one per plant) that determines the hourly availability for each 

                                                 

3 Generation mixes are built considering all possible combinations of new entrants, with the number of new 

PV units and new CCGT units varying from zero to the maximum number of units of these technologies as 

expressed in the input data. 
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thermal power plant and period in the model. These availability vectors are built considering 

the equivalent forced outage rate (EFOR) of each thermal plant (both existing and new 

entrants) and are computed by applying a two-state Markov chain with a Monte Carlo 

approach4. 

PV power plants are considered not to suffer any outage, and their hourly power output is 

purely deterministic5, modelled through a load profile that replicates the typical 

meteorological year. Such hourly load profile has been obtained from the System Advisor 

Model (SAM) of the National Renewable Energy Laboratory (NREL) [51]. The annualised 

investment costs for new CCGT and new PV generation units have been obtained from 

[52] and [53], respectively, considering a discount factor of 7% and a payback period of 20 

years. The cost of non-served energy, in this case, is the same as the model price cap, which 

is set at 3000 €/MWh, which is the price cap established in the EUPHEMIA algorithm used 

to clear the European regional day-ahead market. The detailed formulation of the UC model 

is presented hereunder. 

                                                 

4 For details on the modeling of the availability of thermal plants, please refer to [45]. 

5 This is of course a simplification and more precise results may be obtained through a probabilistic modelling 

of the availability of solar PV, which could result in a reduction of solar PV availability during scarcity 

conditions. This technology is characterised by a significant variability along the year; however, during the 

summer period, coincident with peak demand, solar output tends to be high and stable according to the typical 

meteorological year data used. This should reduce the divergence between a deterministic and a probabilistic 

modelling of its availability. 
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Unit Commitment formulation 

Indexes and sets 

g∈G Generating technologies 

 t∈T Hourly periods 

Parameters 

Cg
LV Linear variable cost of a unit of technology g [€/MWh] 

Cg
NL No-load cost of a unit of technology g [€/MWh] 

Cg
SD Shut-down cost of a unit of technology g [€] 

Cg
SU Start-up cost of a unit of technology g [€] 

CNSE Non-served energy price (in this case 3000 €/MWh) [€/MWh] 

P�g Maximum power output of a unit of technology g [MW] 

P
g
 Minimum power output of a unit of technology g [MW] 

Ng Number of units installed of technology g 

AVg,t Number of units of technology g available in period t 

AICg Annualised investment cost of units of technology g [k€/MW] 

Dt Demand in period t [MWh] 

EFOR��������g Maximum equivalent forced outage rate of a unit of technology g  [p.u.] 

EFOR
g
 Minimum equivalent forced outage rate of a unit of technology g [p.u.] 

MTRg  Mean time for recovery for units of technology g [periods] 

Variables 

nset Non-served energy in period t [MWh] 

p
g,t Power output above minimum output of all technology g units in period t [MW] 

ug,t Number of units of technology g committed in period t 

vg,t Number of units of technology g starting-up in period t 
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wg,t Number of units of technology g shutting-down in period t  

nset,pg,t
∈R 

ug,t,vg,t,wg,t∈Z 

Formulation 

min����Cg
NLug,t+Cg

LV �P
g
ug,t+p

g,t�+Cg
SUvg,t+Cg

SDwg,t�+CNSEnset
g∈G

�
t∈T

 

( 1 ) 

��P
g
ug,t+p

g,t�=Dt-nset
g∈G

                                                                                 ∀t∈T 
( 2 ) 

ug,t-ug,t-1=vg,t-wg,t                                                                                        ∀g∈G, ∀t∈T  ( 3 ) 

p
g,t≤ �P�g-P

g
� ug,t                                                                                     ∀g∈G, ∀t∈T  ( 4 ) 

ug,t≤AVg,t                                                                                                ∀g∈G, ∀t∈T  ( 5 ) 

0≤ug,t,vg,t,wg,t≤Ng                                                                                  ∀g∈G, ∀t∈T  ( 6 ) 

p
g,t

,nset≥0                                                                                                 ∀g∈G, ∀t∈T  ( 7 ) 

Input data 

The data used in this modelling exercise are not meant to be realistic and may not reflect 

the reality of some of the technologies included in the mix. 
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 Nuclear Coal CCGT Fuel 
oil 

PV New 
CCGT 

New PV 

No. of units 25 20 35 10 5 75 65 
P�g [MW] 500 500 500 500 200 100 100 
P

g
 [MW] 500 300 200 200 0 20 0 

Cg
LV 

[€/MWh] 
6.5 37.25 60.75 189.5 0 59 0 

Cg
NL 

[€/MWh] 
0 525 3150 6750 0 1575 0 

Cg
SD [€] 50 2250 3500 750 0 700 0 

Cg
SU [€] 50 22500 35000 7500 0 7000 0 

EFOR��������g 
[p.u.] 

0.02 0.15 0.06 0.20 0.00 0.02 0.00 

EFOR
g
 

[p.u.] 
0.01 0.05 0.04 0.10 0.00 0.02 0.00 

AICg 
[k€/MW] 

- - - - - 75 135 

MTRg [h] 10 10 10 10 10 10 10 

2.2 Second step: the capacity auction 

Once the expected incomes from the short-term market are computed for each generating 

unit, their bids, expressed as €/MW-year, are computed based on the methodology 

presented in this subsection, the auction is cleared at the marginal price, and all units are 

remunerated at the price offered by the last accepted bid. De-rated capacities from different 

technologies compete on equal terms to cover the demand of firm capacity in the auction. 

The reliability product for this case study does not consider any performance incentive or 

penalty6. Therefore, bids presented by different agents only depend on the value of 

investment costs that are not recovered through the short-term market revenues (perfect 

information on the future behaviour of the market is considered). In the case of existing 

                                                 

6 Performance incentives are a pivotal element of the design of capacity mechanisms. However, the penalty 

would not have an impact on the effect which this paper is focusing on; therefore, it is not modeled here. 
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generators, investment costs are sunk, so their bids are set at zero price. On the other hand, 

the bids from new entrants can be represented by the following expression [45]: 

bidi=Max �0;
icosi+ocosi-mrevi

capni∙drfi
� 

Being these the terms: 

bidi is the bid of generating unit i. 

icosi is the annualised investment cost of generating unit i. 

ocosi is the total operation cost of generating unit i throughout the year. 

mrevi is the total short-term market revenue of generating unit i throughout the year. 

capni is the nameplate capacity of generating unit i. 

drfi is the de-rating factor of generating unit i 

The numerator represents the sum of all costs, investments plus operational costs, minus 

the revenues from the short-term market. The denominator represents the firm capacity of 

the power plant, which depends on the de-rating factor assigned by the regulator to each 

generation unit or each technology.  

In this model, the de-rating factor used in the second step is an exogenous variable7. For 

the sake of simplicity, and in order to focus only on the effect that is being studied, the de-

rating factors for thermal generators are set according to the EFOR of their technology and 

do not vary. In contrast, the de-rating factor for PV power plants varies between 10% to 

                                                 

7 The methodology for the calculation of de-rating factors is a very relevant area in the design of modern 

capacity markets. No theoretical discussion is provided here, since the topic exceeds the scope of this article, 

but relevant reviews can be found in [54] or [19]. 
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70%8. The goal is to analyse the impact that the regulatory decision regarding the de-rating 

factor of solar energy may have on the outcome of the capacity auction and the resulting 

generation mix. 

For each value of the PV de-rating factor, the auction is cleared for all the mixes initially 

considered, using the results of the unit commitment as an input for the bid calculation. 

Then the mix resulting from the auction is compared to the initial mix and only the mixes 

where the expectations match the auction results are considered valid solutions from the 

second step (right side of Figure 1). This validation phase eliminates all infeasible and 

incoherent mixes, i.e., scenarios in which some of the new resources considered in the unit 

commitment are eventually not cleared in the auction and, therefore, would not be installed. 

Finally, among all feasible mixes, the model selects the one with the lowest auction price. 

Since the model is run for several PV de-rating factors ranging from 10% to 70%, a different 

optimal mix will be identified for each PV de-rating factor and this allows to study the 

impact of this pivotal element of the capacity market, as discussed in section 3. 

2.3 Initial data for simulations 

The existing installed capacity of the power system considered in the simulations is 46 GW, 

with a preponderance of CCGTs, nuclear and coal power plants, and a small installed 

capacity of renewable energy sources (namely PV power plants). The system demand is 

represented as a continuous profile of 8760 hours with an annual peak demand of 44.35 GW 

in summer, while demand is lower in winter. Three instances of daily demand profiles (low, 

                                                 

8 In real capacity mechanisms, the de-rating assigned to solar PV may vary between 5% (e.g., Ireland) and 50% 

(e.g., MISO), as analysed in [14]. 
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medium and high) are shown in Figure 2, together with a graphical representation of the 

generation mix. 

 

Figure 2: Pre-existing installed capacity (left) and daily demand representation (right) 

In this case study, the demand of firm capacity in the capacity auction is another exogenous 

variable and it is set at 49 GW. This value may reflect the will of the regulator to improve 

the reliability in the system with respect to the current level and it has been selected to leave 

some space for new entrants9, who will determine the price in the capacity auction. 

                                                 

9 The demand in the auction (or, using different terminologies, the capacity requirement or the target volume) 

is another central element in the design of capacity mechanisms; it should be set considering the reliability 

target that the regulator wants to achieve. A theoretical discussion on the topic exceeds the scope of this 

article, but it can be found in [54] or [55]. 
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3 RESULTS AND DISCUSSIONS: THE ROLE OF THE DE-RATING FACTOR 

This section presents the main results that have been extracted from the simulation model. 

The main focus is on how the resource mix evolves for different values of the PV de-rating 

factor, analysing several elements, such as the new installed capacity (CCGTs and solar PV) 

cleared in the auction, the annual production of different technologies, the actual PV de-

rating factor that is registered ex post, the non-served energy, the price of the short-term 

market, and the clearing price of the capacity auction. 

3.1 Installed capacity of new entrants 

The mix under study needs new firm capacity to meet future demand reliably. Two 

technologies are competing in the auction, new PV power plants and new CCGTs. In this 

case example, when the de-rating factor that is recognised to PV units increases, the PV 

installed capacity in the resource mix increments to the detriment of new CCGTs. The 

variation of the installed capacity of new PV power plants and new CCGTs as a function of 

the de-rating factor is represented on the left of Figure 3. The graph on the right of Figure 
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3 represents the combined firm capacity of PV, new CCGT and new PV, obtained as the 

product of the de-rating factor and the installed capacity of each of these technologies. 

 

Figure 3: Variation of resulting installed nameplate capacity of new entrants depending on the PV de-rating 

factor (left) and variation of the firm capacity (right); demand for firm capacity is 49 GW, of which 6.8 GW 

have to come from new CCGT and solar PV. 

Despite this general positive correlation between the PV de-rating factor and its installed 

capacity in the optimal mix, when the de-rating factor of PV increases up to 0.5, the resulting 

installed capacity begins to decline. The decrease is caused by the reduction in the installed 

nameplate capacity of PV needed to cover the auction demand as the de-rating factor grows 

larger. On the other hand, there is a counterintuitive outcome for those small intervals in 

which the new PV installed capacity remains constant while the CCGT installed capacity 

decreases. In those intervals, CCGTs, whose de-rating is fixed, cover a particular share of 

the demand for firm capacity, while the rest must be covered through PV power plants. If 

the latter are recognised a higher de-rating factor, a lower CCGT installed capacity will be 

needed to provide the same amount of firm capacity. All these effects can be better 

understood by comparing the left and right graphs of Figure 3. 
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3.2 Annual production 

The annual production of each technology is obviously influenced by the outcomes of the 

capacity auction. As analysed in the previous subsection, higher values of the PV de-rating 

factor provide a competitive advantage in the auction to new PV units, which increase their 

installed capacity and their yearly generation, while new CCGTs suffer the opposite effect, 

i.e., lower capacity cleared in the auction and, consequently, lower annual production. 

 

Figure 4: Variation of technology production depending on the PV de-rating factor 

However, new PV plants are not able to produce throughout the whole day; therefore, the 

annual production that is provided by new CCGTs for low PV de-rating factors has to be 

substituted by existing technologies with higher variable costs (in this case example, 

existing CCGTs and fuel oil power plants). Since, in the model, existing CCGTs have lower 

unitary operating costs than fuel oil power plants, except for start-up and shut-down costs, 
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the former experience most of the increase in the annual production (green line) to cover 

the reduced production by new CCGTs (red line). 

3.3 Actual PV contribution to reliability and divergence with its de-rating 

As explained in the introduction, the firm capacity of a resource, as calculated through the 

corresponding de-rating factor, must reflect its expected contribution during scarcity 

conditions. Therefore, if the objective is to compare the expected contribution with the 

actual one, the performance of solar PV during scarcity conditions in the modelled power 

system must be studied. 

There are several metrics that can be used to represent reliability and identify scarcity 

conditions [56][57][58]. As discussed in [19], the growth in the elasticity of demand will 

not allow in the future the identification of scarcity conditions using only technical 

parameters and reliability metrics will have to internalise the price dimension in order to be 

resilient. In this case study, scarcity conditions are identified through the market price, 

which is used as a critical period indicator, following a basic feature of the reliability options 

design [24][59][60][59]. A price threshold equal to 300 €/MWh is set and scarcity 

conditions are defined as those instances when the short-term market price exceeds such 

threshold10. Therefore, the actual contribution of each technology to reliability is 

                                                 

10 It must be remarked that analogous conclusions could be extracted from the case study presented in this 

article if the contribution to the system reliability were assessed through a different metric, for instance, by 

identifying scarcity conditions as those hours with non-served energy and assessing the contribution of each 

generating unit in those hours (Figure 8 shows how the two metrics present the same behaviour for growing 

PV de-rating factors). 
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represented as its average production during scarcity conditions, divided by the total 

installed capacity of that technology. 

As already observed in this case example, low values of the PV de-rating factor lead to low 

capacity additions of PV. For low penetrations of solar PV, the peak net demand (defined as 

total system demand minus solar PV production) still occurs in the central hours of the day, 

causing higher short-term market prices in these hours (Figure 5). In this case, PV power 

plants provide a valuable contribution to reliability, since they produce when the system is 

tight. 

 

Figure 5: Total demand, net demand, and short-term market price for a PV de-rating factor of 0.1 

On the other hand, higher PV de-rating factors increase the new PV capacity cleared in the 

auction. A higher PV installed capacity provokes a shift in the peak net demand towards the 

evening, when solar generation declines and thermal power plants are called to ramp up, 
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thus resulting in higher short-term prices and higher risk of scarcity in a time period when 

solar PV cannot produce (Figure 6). In these conditions, the contribution to reliability from 

PV power plants is reduced. 

 

Figure 6: Total demand, net demand, and short-term market price for a PV de-rating factor of 0.7 

These changes in the operation of the system, in terms of peak net demand and short-term 

price, affect the actual contribution to reliability from PV power plants. For higher PV 

penetrations, these plants will not be able to produce when the system is tight and the short-

term price is abnormally high. Therefore their actual contribution will be lower, as shown 

in Figure 7. 
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Figure 7: Variation of the actual contribution to reliability from solar PV depending on its de-rating factor11  

This chart presents a key outcome of our discussion. On the top-left of this line, the actual 

contribution from PV is higher than the one recognised ex-ante through the de-rating factor 

assigned by the regulator. Thus, the technology ends up providing a larger contribution 

than the one it is being remunerated for, based on the original allocation of firm capacity. In 

this case, an excessive amount of firm capacity from new CCGTs will be procured in the 

auction, increasing the cost of the capacity mechanism. 

                                                 

11 The dotted line in Figure 7 represents points in which the actual contribution to reliability from PV matches 

the PV de-rating factor defined by the regulator. 
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On the bottom-right of the chart, the actual contribution from PV ends up being lower than 

the one recognised in the de-rating phase, meaning that the PV technology does not provide 

the reliability contribution it was remunerated for in the auction. This result also implies 

that the demand for reliability cannot be expected to be covered, leading to undesired levels 

of non-served energy (subsection3.4) and short-term market prices (subsection 3.5). 

The discrepancy between the assumptions behind the model used to compute de-rating 

factors (or the demand for firm capacity in the auction) and the actual performance of the 

resource mix resulting from the auction itself is one of the main challenges in the design of 

capacity mechanisms. The ideal solution would be to clear capacity markets through an 

iterative process that allows to validate the outcome of the auction only if such discrepancy 

is below a certain tolerance, as also proposed in [54]. However, no capacity mechanism 

implemented to date is based on an iterative process of this type. Therefore, the model 

presented in this article is based on a conventional clearing of the capacity auction, but it 

tries to highlight the importance of carefully defining the assumption on which de-rating 

factors are computed. 

3.4 Reliability and scarcity conditions 

The PV de-rating factor also influences the overall reliability of the system. As mentioned 

in the previous subsection, if the de-rating factor of PV power plants is larger than the real 

reliability contribution that these units provide, the demand for reliability is not satisfied, 

since many new CCGTs were pushed out of the auction by new PV power plants. This effect 

can be observed through different reliability metrics. The left chart in Figure 8 shows how 

the non-served energy registered in the system increases for growing values of PV de-rating 

factor. A similar increase can be observed in the number of hours with high short-term 

market prices, which is the reliability metric used to assess the actual contribution to 

reliability by PV units, as presented in the right chart in Figure 8. 
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Figure 8: Variation of the non-served energy and the number of hours with high short-term prices 

3.5 Short-term prices in the long-term and capacity market prices 

3.5.1 Short-term market price 

The short-term market price12 evolves according to the generation mix and the annual 

production of different technologies. For higher PV de-rating factor values, the yearly 

production of new CCGTs decreases in favor of more costly existing thermal plants, which 

leads to an increase in the average short-term market price. This effect is aggravated by the 

occurrence of scarcity events with non-served energy, during which the short-term price 

reaches the administrative price cap (see section 2.1). 

                                                 

12 The short-term price is obtained as the dual variable associated to the generation-demand balance constraint 

of the optimization problem, see subsection 2.1 for details. 
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Figure 9: Variation of the average short-term market price depending on the PV de-rating factor 

3.5.2 Clearing price of the capacity auction 

As explained in subsection 2.2, the bids from generation units in the capacity auction depend 

on the de-rating factor granted to them and their market revenues in the short-term market. 

As the de-rating factor of solar PV increases, the bids submitted by these power plants 

decrease, following the equation introduced in section 2.2. Additionally, the growth in the 

short-term market price (Figure 9) increases the market revenues for all technologies, thus 

provoking an overall reduction also in the bids presented by new CCGT units. The variation 

in the yearly non-recovered investment costs (numerator of the bid calculation formula 

presented in section 2.2) for solar PV and the bids presented by these new power plants can 

be observed for two values of the PV de-rating factor in Table 1. 
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Table 1: Comparison between the yearly non-recovered investment costs and the bids by new PV power 

plants for a de-rating factor of 0.2 and 0.6 

  PV de-rating factor 

  0.2 0.6 

Non-recovered investment costs [k€/MW] 5.446 4.552 
Resulting Bids [k€/MW] 27.232 7.587 

 

The decrease in new PV and new CCGTs bids leads to a reduction in the capacity auction 

clearing price as the PV de-rating factor rises, which can be observed in Figure 10. 

 

Figure 10: Variation of the capacity auction price depending on the PV de-rating factor 

A low clearing price in the capacity auction (due to a generous/optimistic allocation of firm 
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an increase of non-served energy (Figure 8) and the short-term market price (Figure 9). A 

capacity mechanism cannot be isolated from the rest of the market design and even a small 

change in an individual parameter, as the de-rating factor of PV units, may significantly 

impact the outcome of the capacity auction and the performance of the system as a whole. 

4 CONCLUSIONS AND POLICY IMPLICATIONS 

Capacity mechanisms have become a pillar of the electricity market design while power 

sectors undergo the energy transition. When they are in place, these mechanisms, together 

with auctions for renewables, become the main entry point for new resources and their 

outcome drives the evolution of the entire mix [61]. As presented in this article, a pivotal 

feature in the design of these instruments is the calculation of the firm capacity that each 

resource or technology can trade in the capacity market, commonly obtained through the 

application of de-rating factors. 

This paper quantitatively studied the impact of the ex-ante definition of de-rating factors on 

the resource mix emerging from the capacity market. This analysis is based on a two-step 

model that simulates the capacity market. The case study presented in this article focuses 

on a power system dominated by thermal generation, with a summer peak demand, and with 

only two potential new entrants, i.e., CCGT and solar PV. The de-rating factor assigned to 

solar PV generation strongly influences the outcome of the capacity market. The larger the 

PV de-rating factor, the greater the competitive advantage of this technology with respect 

to CCGTs and the greater the capacity of PV power plants cleared in the auction. The 

outcome of the auction affects the resource mix and, consequently, the operation and the 

performance of the system. A larger PV de-rating factor increases solar penetration and this 

may provoke a shift in the scarcity conditions that the system has to face. However, this also 

affects the actual contribution of solar PV to reliability. Conversely, an insufficient allocation 

of firm capacity for solar PV leads to unnecessary extra costs in the capacity auction. These 
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effects, together with the main findings of the article, are represented graphically in Figure 

11. 

 

Figure 11. Graphical representation of the main findings of the article 

Although the simulation model presented in this article shows these effects for solar PV, its 

findings also apply to other technologies, especially intermittent resources, whose 

availability is more likely to present some correlation with demand. With current and 

upcoming resource mixes, the regulator has a very tight margin to guarantee efficiency 

when defining a de-rating factor. This decision influences the resource mix and the real 

contribution that each resource can provide to the system’s reliability. If the de-rating factor 

is too low, it will undercompensate the technology for its reliability contribution and may 

potentially increase the overall cost of the capacity mechanism. If the de-rating factor is too 

high, it will distort the outcome of the auction and result in a resource mix that is not able 
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to achieve the reliability target, causing non-served energy and higher short-term market 

prices. 

Capacity mechanisms represent a regulatory intervention that aims at impacting the 

resource mix to come. However, our discussion reflects the significant complexities that 

these mechanisms entail, and thus it calls for a careful design process, in which the actual 

impact of the different design elements needs to be cautiously assessed. 
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